Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
BMC Genomics ; 25(1): 376, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632539

ABSTRACT

BACKGROUND: Mycobacterium avium complex (MAC), including Mycobacterium intracellulare is a member of slow-growing mycobacteria and contributes to a substantial proportion of nontuberculous mycobacterial lung disease in humans affecting immunocompromised and elderly populations. Adaptation of pathogens in hostile environments is crucial in establishing infection and persistence within the host. However, the sophisticated cellular and molecular mechanisms of stress response in M. intracellulare still need to be fully explored. We aimed to elucidate the transcriptional response of M. intracellulare under acidic and oxidative stress conditions. RESULTS: At the transcriptome level, 80 genes were shown [FC] ≥ 2.0 and p < 0.05 under oxidative stress with 10 mM hydrogen peroxide. Specifically, 77 genes were upregulated, while 3 genes were downregulated. In functional analysis, oxidative stress conditions activate DNA replication, nucleotide excision repair, mismatch repair, homologous recombination, and tuberculosis pathways. Additionally, our results demonstrate that DNA replication and repair system genes, such as dnaB, dinG, urvB, uvrD2, and recA, are indispensable for resistance to oxidative stress. On the contrary, 878 genes were shown [FC] ≥ 2.0 and p < 0.05 under acidic stress with pH 4.5. Among these genes, 339 were upregulated, while 539 were downregulated. Functional analysis highlighted nitrogen and sulfur metabolism pathways as the primary responses to acidic stress. Our findings provide evidence of the critical role played by nitrogen and sulfur metabolism genes in the response to acidic stress, including narGHIJ, nirBD, narU, narK3, cysND, cysC, cysH, ferredoxin 1 and 2, and formate dehydrogenase. CONCLUSION: Our results suggest the activation of several pathways potentially critical for the survival of M. intracellulare under a hostile microenvironment within the host. This study indicates the importance of stress responses in M. intracellulare infection and identifies promising therapeutic targets.


Subject(s)
Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection , Humans , Aged , Mycobacterium avium Complex/genetics , Transcriptome , Mycobacterium avium-intracellulare Infection/microbiology , Gene Expression Profiling , Oxidative Stress , Nitrogen , Sulfur
2.
Ann Clin Microbiol Antimicrob ; 23(1): 25, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500139

ABSTRACT

BACKGROUND: Mycobacterium avium complex (MAC) is a group of slow-growing mycobacteria that includes Mycobacterium avium and Mycobacterium intracellulare. MAC pulmonary disease (MAC-PD) poses a threat to immunocompromised individuals and those with structural pulmonary diseases worldwide. The standard treatment regimen for MAC-PD includes a macrolide in combination with rifampicin and ethambutol. However, the treatment failure and disease recurrence rates after successful treatment remain high. RESULTS: In the present study, we investigated the unique characteristics of small colony variants (SCVs) isolated from patients with MAC-PD. Furthermore, revertant (RVT) phenotype, emerged from the SCVs after prolonged incubation on 7H10 agar. We observed that SCVs exhibited slower growth rates than wild-type (WT) strains but had higher minimum inhibitory concentrations (MICs) against multiple antibiotics. However, some antibiotics showed low MICs for the WT, SCVs, and RVT phenotypes. Additionally, the genotypes were identical among SCVs, WT, and RVT. Based on the MIC data, we conducted time-kill kinetic experiments using various antibiotic combinations. The response to antibiotics varied among the phenotypes, with RVT being the most susceptible, WT showing intermediate susceptibility, and SCVs displaying the lowest susceptibility. CONCLUSIONS: In conclusion, the emergence of the SCVs phenotype represents a survival strategy adopted by MAC to adapt to hostile environments and persist during infection within the host. Additionally, combining the current drugs in the treatment regimen with additional drugs that promote the conversion of SCVs to RVT may offer a promising strategy to improve the clinical outcomes of patients with refractory MAC-PD.


Subject(s)
Lung Diseases , Mycobacterium avium-intracellulare Infection , Humans , Mycobacterium avium Complex/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mycobacterium avium-intracellulare Infection/drug therapy , Mycobacterium avium-intracellulare Infection/microbiology , Lung Diseases/drug therapy , Lung Diseases/microbiology , Ethambutol/pharmacology , Ethambutol/therapeutic use
3.
Front Microbiol ; 14: 1161194, 2023.
Article in English | MEDLINE | ID: mdl-37089534

ABSTRACT

Repetitive sequence-based PCR (rep-PCR) is a potential epidemiological technique that can provide high-throughput genotype fingerprints of heterogeneous Mycobacterium strains rapidly. Previously published rep-PCR primers, which are based on nucleotide sequences of Gram-negative bacteria may have low specificity for mycobacteria. Moreover, it was difficult to ensure the continuity of the study after the commercial rep-PCR kit was discontinued. Here, we designed a novel rep-PCR for Mycobacterium intracellulare, a major cause of nontuberculous mycobacterial pulmonary disease with frequent recurrence. We screened the 7,645 repeat sequences for 200 fragments from the genome of M. intracellulare ATCC 13950 in silico, finally generating five primers with more than 90% identity for a total of 226 loci in the genome. The five primers could make different band patterns depending on the genome of three different M. intracellulare strains using an in silico test. The novel rep-PCR with the five primers was conducted using 34 bacterial samples of 7 species containing 25 M. intracellulare clinical isolates, compared with previous published rep-PCRs. This shows distinguished patterns depending on species and blotting assay for 6 species implied the sequence specificity of the five primers. The Designed rep-PCR had a 95-98% of similarity value in the reproducibility test and showed 7 groups of fingerprints in M. intracellulare strains. Designed rep-PCR had a correlation value of 0.814 with VNTR, reference epidemiological method. This study provides a promising genotype fingerprinting method for tracing the recurrence of heterogeneous M. intracellulare.

4.
Pathogens ; 11(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36558878

ABSTRACT

The early diagnosis of Helicobacter pylori infection is important for gastric cancer prevention and treatment. Although endoscopic biopsy is widely used for H. pylori diagnosis, an accurate biopsy cannot be performed until a lesion becomes clear, especially in pediatric patients. Therefore, it is necessary to develop convenient and accurate methods for early diagnosis. FlaA, an essential factor for H. pylori survival, shows high antigenicity and can be used as a diagnostic marker. We attempted to identify effective antigens containing epitopes of high diagnostic value in FlaA. Full-sized FlaA was divided into several fragments and cloned, and its antigenicity was investigated using Western blotting. The FlaA fragment of 1345-1395 bp had strong immunogenicity. ELISA was performed with serum samples from children by using the 1345-1395 bp recombinant antigen fragment. IgG reactivity showed 90.0% sensitivity and 90.5% specificity, and IgM reactivity showed 100% sensitivity and specificity. The FlaA fragment of 1345-1395 bp discovered in the present study has antigenicity and is of high value as a candidate antigen for serological diagnosis. The FlaA 1345-1395 bp epitope can be used as a diagnostic marker for H. pylori infection, thereby controlling various gastric diseases such as gastric cancer and peptic ulcers caused by H. pylori.

5.
Front Immunol ; 13: 931876, 2022.
Article in English | MEDLINE | ID: mdl-36505429

ABSTRACT

Mycobacterium avium complex (MAC) is the main causative agent of infectious diseases in humans among nontuberculous mycobacteria (NTM) that are ubiquitous organisms found in environmental media such as soil as well as in domestic and natural waters. MAC is a primary causative agent of NTM-lung disease that threaten immunocompromised or structural lung disease patients. The incidence and the prevalence of M. tuberculosis infection have been reduced, while MAC infections and mortality rates have increased, making it a cause of global health concern. The emergence of drug resistance and the side effects of long-term drug use have led to a poor outcome of treatment regimens against MAC infections. Therefore, the development of host-directed therapy (HDT) has recently gained interest, aiming to accelerate mycobacterial clearance and reversing lung damage by employing the immune system using a novel adjuvant strategy to improve the clinical outcome of MAC infection. Therefore, in this review, we discuss the innate immune responses that contribute to MAC infection focusing on macrophages, chief innate immune cells, and host susceptibility factors in patients. We also discuss potential HDTs that can act on the signaling pathway of macrophages, thereby contributing to antimycobacterial activity as a part of the innate immune response during MAC infection. Furthermore, this review provides new insights into MAC infection control that modulates and enhances macrophage function, promoting host antimicrobial activity in response to potential HDTs and thus presenting a deeper understanding of the interactions between macrophages and MACs during infection.


Subject(s)
Lung Diseases , Mycobacterium avium-intracellulare Infection , Mycobacterium tuberculosis , Humans , Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection/drug therapy , Macrophages , Nontuberculous Mycobacteria
6.
Vet Res ; 53(1): 71, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36100945

ABSTRACT

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease, a chronic debilitating disease in ruminants. To control this disease, it is crucial to understand immune evasion and the mechanism of persistence by analyzing the early phase interplays of the intracellular pathogens and their hosts. In the present study, host-pathogen interactions at the transcriptomic level were investigated in an in vitro macrophage infection model. When differentiated human THP-1 cells were infected with MAP, the expression of various genes associated with stress responses and metabolism was altered in both host and MAP at 3 h post-infection. MAP upregulates stress-responsive global gene regulators, such as two-component systems and sigma factors, in response to oxidative and cell wall stress. Downstream genes involved in type VII secretion systems, cell wall synthesis (polyketide biosynthesis proteins), and iron uptake were changed in response to the intracellular environment of macrophages. On the host side, upregulation of inflammatory cytokine genes was observed along with pattern recognition receptor genes. Notably, alterations in gene sets involved in arginine metabolism were observed in both the host and MAP, along with significant downregulation of NOS2 expression. These observations suggest that the utilization of metabolites such as arginine by intracellular MAP might affect host NO production. Our dual RNA-seq data can provide novel insights by capturing the global transcriptome with higher resolution, especially in MAP, thus enabling a more systematic understanding of host-pathogen interactions.


Subject(s)
Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animals , Arginine/metabolism , Humans , Paratuberculosis/microbiology , RNA-Seq/veterinary , THP-1 Cells
7.
Microb Pathog ; 169: 105675, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35820578

ABSTRACT

Paratuberculosis (PTB) is a chronic contagious granulomatous enteritis of wild and domestic ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). PTB causes considerable economic losses to the dairy industry through decreased milk production and premature culling. PTB-affected cattle undergo a subclinical stage without clinical signs and initiate fecal shedding of MAP into the environment. Current diagnostic tools have low sensitivity for the detection of subclinical PTB infection. Therefore, alternative diagnostic tools are required to improve the diagnostic sensitivity of subclinical PTB infection. In this study, we performed ELISA for three previously identified host biomarkers (fetuin, alpha-1-acid glycoprotein, and apolipoprotein) and analyzed their diagnostic performance with conventional PTB diagnostic methods. We observed that serum fetuin levels were significantly lowered in the subclinical shedder and clinical shedder groups than in the healthy control group, indicating its potential utility as a diagnostic biomarker for bovine PTB. Also, fetuin showed an excellent discriminatory power with an AUC = 0.949, a sensitivity of 92.6%, and a specificity of 94.4% for the detection of subclinical MAP infection. In conclusion, our results demonstrated that fetuin could be used as a diagnostic biomarker for enhancing the diagnostic sensitivity for the detection of subclinical MAP infections that are difficult to detect based on current diagnostic methods.


Subject(s)
Cattle Diseases , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animals , Asymptomatic Infections , Biomarkers , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/microbiology , Feces/microbiology , Fetuins , Paratuberculosis/diagnosis , Paratuberculosis/microbiology , alpha-Fetoproteins
8.
PLoS One ; 16(11): e0259539, 2021.
Article in English | MEDLINE | ID: mdl-34735546

ABSTRACT

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease (JD), and it causes diarrhea and weakness in cattle. During a long subclinical stage, infected animals without clinical signs shed pathogens through feces. For this reason, the diagnosis of JD during the subclinical stage is very important. Circulating miRNAs are attracting attention as useful biomarkers in various veterinary diseases because of their expression changes depending on the state of the disease. Based on current knowledge, circulating miRNAs extracted from bovine serum were used to develop a diagnostic tool for JD. In this study, the animals were divided into 4 groups according to fecal shedding, the presence of antibodies, and clinical signs. Gene expression was analyzed by performing miRNA sequencing for each group, and it was identified that the miRNA expression changed more as the MAP infection progressed. The eight miRNAs that were differentially expressed in all infected groups were selected as biomarker candidates based on their significant differences compared to the control group. These biomarker candidates were validated by qRT-PCR. Considering the sequencing data, two upregulated miRNAs and two downregulated miRNAs showed the same trend in the validation results. Network analysis was also conducted and the results showed that mRNAs (IL-10, TGF-ß1) associated with regulatory T cells were predicted to be activated in the subclinical stage. Taken together, our data suggest that two miRNAs (bta-miR-374b, bta-miR-2887) may play major roles in the immune response to MAP infection during the subclinical stage.


Subject(s)
MicroRNAs/metabolism , Mycobacterium avium/metabolism , Animals , Cattle , Interleukin-10/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA , Transforming Growth Factor beta/metabolism
9.
Front Immunol ; 12: 703060, 2021.
Article in English | MEDLINE | ID: mdl-34262571

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains a global health threat despite recent advances and insights into host-pathogen interactions and the identification of diverse pathways that may be novel therapeutic targets for TB treatment. In addition, the emergence and spread of multidrug-resistant Mtb strains led to a low success rate of TB treatments. Thus, novel strategies involving the host immune system that boost the effectiveness of existing antibiotics have been recently suggested to better control TB. However, the lack of comprehensive understanding of the immunomodulatory effects of anti-TB drugs, including first-line drugs and newly introduced antibiotics, on bystander and effector immune cells curtailed the development of effective therapeutic strategies to combat Mtb infection. In this review, we focus on the influence of host immune-mediated stresses, such as lysosomal activation, metabolic changes, oxidative stress, mitochondrial damage, and immune mediators, on the activities of anti-TB drugs. In addition, we discuss how anti-TB drugs facilitate the generation of Mtb populations that are resistant to host immune response or disrupt host immunity. Thus, further understanding the interplay between anti-TB drugs and host immune responses may enhance effective host antimicrobial activities and prevent Mtb tolerance to antibiotic and immune attacks. Finally, this review highlights novel adjunctive therapeutic approaches against Mtb infection for better disease outcomes, shorter treatment duration, and improved treatment efficacy based on reciprocal interactions between current TB antibiotics and host immune cells.


Subject(s)
Antitubercular Agents/therapeutic use , Host-Pathogen Interactions , Mycobacterium tuberculosis/physiology , Tuberculosis , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Tuberculosis/immunology , Tuberculosis/prevention & control
10.
Vet Res ; 52(1): 46, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33736686

ABSTRACT

Mycobacterium avium subsp. paratuberculosis (MAP) is a causative agent of Johne's disease, which is a chronic granulomatous enteropathy in ruminants. Determining the genetic diversity of MAP is necessary to understand the epidemiology and biology of MAP, as well as establishing disease control strategies. In the present study, whole genome-based alignment and comparative analysis were performed using 40 publicly available MAP genomes, including newly sequenced Korean isolates. First, whole genome-based alignment was employed to identify new genomic structures in MAP genomes. Second, the genomic diversity of the MAP population was described by pangenome analysis. A phylogenetic tree based on the core genome and pangenome showed that the MAP was differentiated into two major types (C- and S-type), which was in keeping with the findings of previous studies. However, B-type strains were discriminated from C-type strains. Finally, functional analysis of the pangenome was performed using three virulence factor databases (i.e., PATRIC, VFDB, and Victors) to predict the phenotypic diversity of MAP in terms of pathogenicity. Based on the results of the pangenome analysis, we developed a real-time PCR technique to distinguish among S-, B- and C-type strains. In conclusion, the results of our study suggest that the phenotypic differences between MAP strains can be explained by their genetic polymorphisms. These results may help to elucidate the diversity of MAP, extending from genomic features to phenotypic traits.


Subject(s)
Genetic Variation , Genome, Bacterial , Mycobacterium avium subsp. paratuberculosis/genetics , Genomics , Mycobacterium avium subsp. paratuberculosis/classification , Phylogeny , Polymorphism, Single Nucleotide , Republic of Korea
11.
Front Vet Sci ; 8: 637716, 2021.
Article in English | MEDLINE | ID: mdl-33748212

ABSTRACT

Johne's disease (JD) is a chronic granulomatous enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), which induces persistent diarrhea and cachexia. JD causes huge economic losses to the dairy industry due to reduced milk production and premature culling. Infected animals excrete MAP via feces during the prolonged subclinical stage without exhibiting any clinical signs. Therefore, accurate detection of subclinical stage animals is crucial for successful eradication of JD in the herd. In the current study, we analyzed serum samples of MAP-infected and non-infected cattle to identify potential biomarker candidates. First, we identified 12 differentially expressed serum proteins in subclinical and clinical shedder groups compared to the healthy control group. Second, we conducted ELISA for three selected biomarkers (alpha-2-macroglobulin (A2M), alpha-1-beta glycoprotein, and transthyretin) and compared their diagnostic performance with that of two commercial ELISA diagnostic kits. Serum A2M levels were significantly higher in the MAP-exposed, subclinical shedder, subclinical non-shedder, and clinical shedder groups than in the healthy control group, suggesting its possible use as a diagnostic biomarker for MAP infection. Furthermore, A2M demonstrated a sensitivity of 90.4%, and a specificity of 100% while the two commercial ELISA kits demonstrated a sensitivity of 67.83 and 73.04% and a specificity of 100%, respectively. In conclusion, our results suggest that measuring A2M by ELISA can be used as a diagnostic tool to detect MAP infection, considerably improving the detection rate of subclinical shedders and MAP-exposed animals that are undetectable using current diagnostic tools.

12.
Anim Health Res Rev ; 22(1): 72-84, 2021 06.
Article in English | MEDLINE | ID: mdl-33357252

ABSTRACT

Mycobacterial infections are widely distributed in animals and cause considerable economic losses, especially in livestock animals. Bovine paratuberculosis and bovine tuberculosis, which are representative mycobacterial infections in cattle, are difficult to diagnose using current-generation diagnostics due to their relatively long incubation periods. Thus, alternative diagnostic tools are needed for the detection of mycobacterial infections in cattle. A biomarker is an indicator present in biological fluids that reflects the biological state of an individual during the progression of a specific disease. Therefore, biomarkers are considered a potential diagnostic tool for various diseases. Recently, the number of studies investigating biomarkers as tools for diagnosing mycobacterial infections has increased. In human medicine, many diagnostic biomarkers have been developed and applied in clinical practice. In veterinary medicine, however, many such developments are still in the early stages. In this review, we summarize the current progress in biomarker research related to the development of diagnostic biomarkers for mycobacterial infections in cattle.


Subject(s)
Cattle Diseases , Paratuberculosis , Tuberculosis, Bovine , Animals , Biomarkers , Cattle , Cattle Diseases/diagnosis , Humans , Paratuberculosis/diagnosis , Tuberculosis, Bovine/diagnosis
13.
Sci Rep ; 10(1): 21048, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273606

ABSTRACT

Johne's disease (JD) caused by Mycobacterium avium subsp. paratuberculosis (MAP) is a chronic, wasting infectious disease in ruminants that causes enormous economic losses to the dairy and beef cattle industries. Understanding the mechanism of persistency of MAP is key to produce novel ideas for the development of new diagnostic methods or prevention techniques. We sought interactions between the host and MAP using epithelial passage model, which mimic initial stage of infection. From the transcriptomic analysis of bovine immune cells (PBMCs), it was suggested that infection through the epithelial cells elicited prolonged Th17-derived immune response, as indicated by upregulation of IL-17A, IL-17F and RORC until 120 h p.i., compared to directly infected PBMCs. Global downregulation of gene expression was observed after 72 h p.i., especially for genes encoding cell surface receptors of phagocytic cells, such as Toll-like receptors and MHC class II molecules. In addition, the cholesterol efflux transporters ABCA1, ABCG1, and APOE, which are regulated by the LXR/RXR pathway, were downregulated. In summary, it would be suggested that the host initiate immune response to activate Th17-derived cytokines, and MAP survives persistently by altering the host adaptive immune response by suppressing surface receptors and manipulating lipid metabolism in phagocytic cells.


Subject(s)
Leukocytes, Mononuclear/immunology , Paratuberculosis/immunology , Phagocytes/cytology , Th17 Cells/immunology , Animals , Cattle , Cell Differentiation , Epithelial Cells/immunology , Histocompatibility Antigens Class II/metabolism , Leukocytes, Mononuclear/cytology , Mycobacterium avium subsp. paratuberculosis/pathogenicity , Paratuberculosis/microbiology , Phagocytes/immunology , Toll-Like Receptors/metabolism , Transcriptome
14.
Microorganisms ; 8(8)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722306

ABSTRACT

Non-tuberculous mycobacteria (NTM) are ubiquitous microorganisms that have the potential to cause disease in both humans and animals. Recently, NTM infections have rapidly increased in South Korea, especially in urbanized areas. However, the distribution of species and the antibiotic resistance profile of NTM in environmental sources have not yet been investigated. Therefore, we analyzed the distribution of species and the antibiotic resistance profile of NTM in soil within urban areas of South Korea. A total of 132 isolates of NTM were isolated from soil samples from 1 municipal animal shelter and 4 urban area parks. Among the 132 isolates, 105 isolates were identified as slowly growing mycobacteria (SGM) and 27 isolates as rapidly growing mycobacteria (RGM) based on the sequences of the rpoB and hsp65 genes. The antibiotic resistance patterns of NTM isolates differed from species to species. Additionally, a mutation in the rrs gene found in this study was not associated with aminoglycoside resistance. In conclusion, our results showed that NTM isolates from South Korean soil exhibit multidrug resistance to streptomycin, amikacin, azithromycin, ethambutol, isoniazid, and imipenem. These results suggest that NTM may pose a public threat.

15.
PLoS One ; 15(2): e0228463, 2020.
Article in English | MEDLINE | ID: mdl-32027689

ABSTRACT

Infection with Brucella abortus causes contagious zoonosis, brucellosis, and leads to abortion in animals and chronic illness in humans. Chitosan nanoparticles (CNs), biocompatible and nontoxic polymers, acts as a mucosal adjuvant. In our previous study, B. abortus malate dehydrogenase (Mdh) was loaded in CNs, and it induced high production of pro-inflammatory cytokines in THP-1 cells and systemic IgA in BALB/C mice. In this study, the time-series gene expression analysis of nasal-associated lymphoid tissue (NALT) was performed to identify the mechanism by which Mdh affect the target site of nasal immunization. We showed that intranasal immunization of CNs-Mdh reduced cell viability of epithelial cells and muscle cells at first 1 h, then induced cellular movement of immune cells such as granulocytes, neutrophils and lymphocytes at 6h, and activated IL-6 signaling pathway at 12h within NALT. These activation of immune cells also promoted signaling pathway for high-mobility group box 1 protein (HMGB1), followed by the maturation of DCs required for mucosal immunity. The CNs also triggered the response to other organism and inflammatory response, showing it is immune-enhancing adjuvant. The ELISA showed that significant production of specific IgA was detected in the fecal excretions and genital secretions from the CNs-Mdh-immunized group after 2 weeks-post immunization. Collectively, these results suggest that B. abortus Mdh-loaded CNs triggers activation of HMGB1, IL-6 and DCs maturation signaling within NALT and induce production of systemic IgG and IgA.


Subject(s)
Antibody Formation/physiology , Brucella abortus/immunology , Brucellosis/prevention & control , Immunization/methods , Lymphoid Tissue/immunology , Malate Dehydrogenase/immunology , Administration, Intranasal , Animals , Antibody Formation/drug effects , Brucella abortus/metabolism , Brucellosis/immunology , Chitosan/administration & dosage , Chitosan/chemistry , Chitosan/immunology , Chitosan/pharmacology , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Female , Immunity, Mucosal/drug effects , Immunogenicity, Vaccine , Lymphoid Tissue/drug effects , Malate Dehydrogenase/administration & dosage , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/pharmacology , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Nasal Mucosa/drug effects , Nasal Mucosa/immunology
16.
Microb Pathog ; 142: 104040, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32032767

ABSTRACT

Drug delivery by the nasal or oral route is considered the preferred route of administration because it can induce systemic mucosal immunity. However, few studies have examined the immunogenicity and transport of antigen at the level of the microfold (M) cell, the epithelial cell that specializes in antigen sampling at mucosal surfaces. In our previous study, Brucella abortus malate dehydrogenase (Mdh) was loaded in chitosan nanoparticles (CNs), and it induced high production of proinflammatory cytokines in THP-1 cells and systemic IgA in BALB/C mice. In the present study, an in vitro M cell model was used in which Caco-2 cells and Raji B cells were co-cultured to investigate the impact of the uptake and immunogenicity of B. abortus Mdh on nanoparticle transport in human M cells. Our results showed that loaded CNs induced enhanced transport of Mdh in the M cell model. ELISAs showed significantly higher production of IL-1ß and IL-6 in the CN-Mdh stimulation group than that seen in the Mdh stimulation group. The observed increase of gene expression of TLR2, MyD88, TRAF6, IRF4 and CD14 implied that MyD88-dependent TLR2 signaling was activated by stimulation with CNs-Mdh. These results suggest that Mdh and CNs may function synergistically to enhance Th2-related responses triggered by the MyD88-dependent TLR2 signaling pathway and could induce an inflammatory response in M cells as an M cell-targeted delivery system. This study will contribute to the development of not only effective antigens for intracellular bacteria, including B. abortus, but also vaccine delivery systems that target M cells.

17.
Front Cell Infect Microbiol ; 10: 609712, 2020.
Article in English | MEDLINE | ID: mdl-33520738

ABSTRACT

Mycobacterium avium, an opportunistic intracellular pathogen, is a member of the non-tuberculous mycobacteria species. M. avium causes respiratory disease in immunosuppressed individuals and a wide range of animals, including companion dogs and cats. In particular, the number of infected companion dogs has increased, although the underlying mechanism of M. avium pathogenesis in dogs has not been studied. Therefore, in the present study, the host immune response against M. avium in dogs was investigated by transcriptome analysis of canine peripheral blood mononuclear cells. M. avium was shown to induce different immune responses in canine peripheral blood mononuclear cells at different time points after infection. The expression of Th1-associated genes occurred early during M. avium infection, while that of Th17-associated genes increased after 12 h. In addition, the expression of apoptosis-related genes decreased and the abundance of intracellular M. avium increased in monocyte-derived macrophages after infection for 24 h. These results reveal the M. avium induces Th17 immune response and avoids apoptosis in infected canine cells. As the number of M. avium infection cases increases, the results of the present study will contribute to a better understanding of host immune responses to M. avium infection in companion dogs.


Subject(s)
Cat Diseases , Dog Diseases , Animals , Cats , Dogs , Immunity , Leukocytes, Mononuclear , Mycobacterium avium
18.
Int J Med Microbiol ; 310(1): 151362, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31676233

ABSTRACT

Brucella spp. is the causative agent of brucellosis, one of the worldwide diseases. The pathogen infects humans and animals mainly through the digestive or respiratory tract. Therefore, induction of mucosal immunity is required as the first line of defense. In this study, three Brucella abortus recombinant proteins, malate dehydrogenase (rMdh), outer membrane proteins (rOmp) 10 and 19 were loaded in mucoadhesive chitosan nanoparticles (CNs) and induction of mucosal and systemic immunity were investigated after intranasal immunization of BALB/c mice. These antigens were also coimmunized as cocktail (rCocktail) to evaluate multiple antigen specific vaccine candidates. At 6-weeks post-immunization (wpi), antigen specific total IgG was increased in all of the immunized groups, predominantly IgG1. In addition, spleenocyte from rMdh-, rOmp19-, and rCocktail-immunized groups significantly produced IFN-γ and IL-4 suggesting the induction of a mixed Th1-Th2 response. For mucosal immunity, anti-Mdh IgA from nasal washes and fecal excretions, and anti-Omps IgA from sera, nasal washes, genital secretions and fecal excretions were significantly increased in single antigen immunized groups. In the rCocktail-immunized group, anti-Mdh IgA were significantly increased while anti-Omps IgA was not. Collectively, this study indicates that comprise of B. abortus antigen-loaded CNs elicited the antigen-specific IgA with a Th2-polarized immune responses and combination of the highly immunogenic antigens elicited IgG specific to each type of antigen.


Subject(s)
Antibodies, Bacterial/blood , Bacterial Outer Membrane Proteins/immunology , Brucella Vaccine/immunology , Malate Dehydrogenase/immunology , Nanoparticles/administration & dosage , Th1 Cells/immunology , Th2 Cells/immunology , Animals , Bacterial Outer Membrane Proteins/administration & dosage , Brucella Vaccine/administration & dosage , Brucella abortus/immunology , Brucellosis/prevention & control , Chitosan/administration & dosage , Cytokines/immunology , Female , Immunization , Immunogenicity, Vaccine , Immunoglobulin G/blood , Interferon-gamma/blood , Malate Dehydrogenase/administration & dosage , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Recombinant Proteins/immunology
19.
J Vet Sci ; 19(5): 627-634, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-29929361

ABSTRACT

The aim of this study was to describe the genetic diversity of Mycobacterium avium subsp. paratuberculosis (MAP) obtained from individual cows in Korea. Twelve MAP-positive fecal DNA samples and 19 MAP isolates were obtained from 10 cattle herds located in 5 provinces in Korea. In addition, 5 MAP isolates obtained from the Czech Republic and Slovakia and 3 isolates from Australia were genotyped for comparison with the domestic isolates. The most prevalent strains in Korea were of the "bison-type" genotype (23 of 31 fecal DNA/isolates) and were distributed nationwide. The remaining MAP isolates (8) and all of the foreign isolates were identified as "cattle-type". The bison-type strains which were discriminated only as INMV 68 in variable-number tandem repeats of mycobacterial interspersed repetitive units (MIRU-VNTR) typing. Multilocus short sequence repeat (MLSSR) typing differentiated the bison-type strains into 3 different subtypes. The cattle-type strains were divided into 3 subtypes by MIRU-VNTR and 8 subtypes by MLSSR. The allelic diversities in the MIRU-VNTR and MLSSR results were calculated as 0.567 and 0.866, respectively. These results suggest that MIRU-VNTR typing cannot provide a sufficient description of the epidemiological situation of MAP. Therefore, an alternative method, such as MLSSR, is needed for typing of MAP strains to elucidate the molecular epidemiology of MAP infections. Overall, this study is the first epidemiological survey report in Korea using both MIRU-VNTR and MLSSR typing methods, and it has provided basic data necessary to elucidate the characteristics of MAP infections in Korea.


Subject(s)
Cattle Diseases/epidemiology , Genetic Variation , Mycobacterium avium subsp. paratuberculosis/genetics , Paratuberculosis/epidemiology , Animals , Cattle , Female , Genotyping Techniques/veterinary , Interspersed Repetitive Sequences , Microsatellite Repeats , Polymerase Chain Reaction/veterinary , Republic of Korea/epidemiology
20.
PLoS One ; 13(4): e0196502, 2018.
Article in English | MEDLINE | ID: mdl-29698503

ABSTRACT

Johne's disease is a chronic wasting disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), resulting in inflammation of intestines and persistent diarrhea. The initial host response against MAP infections is mainly regulated by the Th1 response, which is characterized by the production of IFN-γ. With the progression of disease, MAP can survive in the host through the evasion of the host's immune response by manipulating the host immune response. However, the host response during subclinical phases has not been fully understood. Immune regulatory genes, including Th17-derived cytokines, interferon regulatory factors, and calcium signaling-associated genes, are hypothesized to play an important role during subclinical phases of Johne's disease. Therefore, the present study was conducted to analyze the expression profiles of immune regulatory genes during MAP infection in whole blood. Different expression patterns of genes were identified depending on the infection stages. Downregulation of IL-17A, IL-17F, IL-22, IL-26, HMGB1, and IRF4 and upregulation of PIP5K1C indicate suppression of the Th1 response due to MAP infection and loss of granuloma integrity. In addition, increased expression of IRF5 and IRF7 suggest activation of IFN-α/ß signaling during subclinical stages, which induced indoleamine 2,3-dioxygenase mediated depletion of tryptophan metabolism. Increased expression of CORO1A indicate modulation of calcium signaling, which enhanced the survival of MAP. Taken together, distinct host gene expression induced by MAP infection indicates enhanced survival of MAP during subclinical stages.


Subject(s)
Cattle Diseases/pathology , Mycobacterium avium subsp. paratuberculosis/pathogenicity , Paratuberculosis/pathology , Transcriptome , Animals , Cattle , Cattle Diseases/immunology , Cattle Diseases/microbiology , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , Down-Regulation , HMGB1 Protein/blood , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Interferon Regulatory Factors/blood , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Microfilament Proteins/blood , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Paratuberculosis/immunology , Paratuberculosis/microbiology , Phosphotransferases (Alcohol Group Acceptor)/blood , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Signal Transduction/genetics , Th1 Cells/cytology , Th1 Cells/immunology , Th1 Cells/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...